Vertical Circular Motion

Simple Pendulum:

A string of l metres fixed at one end O, with a mess of m kg attached to the other end P, and making oscillations in a vertical plane. The tension in the string is T newtons and the inclination of the string to the vertical is θ . (P is swinging upwards when θ increases from 0 to π .)

Tangental Force $F_T = -mg\sin\theta$, Norminal (Radial) Force $F_N = T - mg\cos\theta$. Tangental Acceleration $a_T = -g\sin\theta = l\ddot{\theta}$, Norminal (Radial) Acceleration $a_N = \frac{T}{m} - g\cos\theta = l\dot{\theta}^2$

From the formula of a_T , $\ddot{\theta} = -\frac{g}{l} \sin \theta$ When $\theta \to 0$ (e.g. $-10^\circ \le \theta \le 10^\circ$), $\sin \theta \to \theta$, and $\boxed{\ddot{\theta} \approx -\frac{g}{l}}$ This is close to a simple harmonic motion $(\ddot{x} = -n^2 x)$ with $n = \sqrt{\frac{g}{l}}$. The period is $\frac{2\pi}{n} = 2\pi \sqrt{\frac{l}{q}}$

Vertical Circular Motion:

Bike in a cage: The radius of the cage is R. The normal inward force is N. Tangental Force $F_T = -mg\sin\theta$, Norminal (Radial) Force $F_N = N - mg\cos\theta$. Tangental Acceleration $a_T = -g\sin\theta = R\ddot{\theta}$, Norminal (Radial) Acceleration $a_N = \frac{N}{m} - g\cos\theta = R\dot{\theta}^2$

As a side note, recall
$$\frac{d}{d\theta} \left[\frac{1}{2} \dot{\theta}^2 \right] = \dot{\theta} \cdot \frac{d}{d\theta} \left(\frac{d\theta}{dt} \right) = \frac{d}{d\theta} \left(\frac{d\theta}{dt} \right) \cdot \frac{d\theta}{dt} = \frac{d}{dt} \left(\frac{d\theta}{dt} \right) = \ddot{\theta}$$
, so $\boxed{\ddot{\theta} = \frac{d}{d\theta} \left[\frac{1}{2} \dot{\theta}^2 \right]}$

From the formula of a_T , $-g\sin\theta = R\ddot{\theta} = R \cdot \frac{d}{d\theta} \left[\frac{1}{2}\dot{\theta}^2\right]$, $\int_0^\theta -g\sin\theta \,d\theta = \int_0^\theta R \cdot \frac{d}{d\theta} \left[\frac{1}{2}\dot{\theta}^2\right] \,d\theta$, $g\left[\cos\theta\right]_0^\theta = \frac{1}{2R} \left[(R\dot{\theta})^2 \right]_0^\theta = \frac{v^2 - u^2}{2R}$, $v^2 - u^2 = 2Rg(\cos\theta - 1)$, $v^2 = u^2 - 2Rg(1 - \cos\theta)$... (1)

From the formula of $a_N \times R$, $R\frac{N}{m} - Rg\cos\theta = R^2\dot{\theta}^2 = v^2$... (2) (1) + (2) : $v^2 + R\frac{N}{m} - Rg\cos\theta = u^2 - 2Rg + 2Rg\cos\theta + v^2$, $R\frac{N}{m} = u^2 - 2Rg + 3Rg\cos\theta$, $N = m\frac{u^2}{R} - mg(2 - 3\cos\theta)$

N must remain positive for all θ to hold the bike on the track and avoid an accident.

$$N = m \frac{u^2}{R} - mg(2 - 3\cos\theta) > 0, \quad u^2 > Rg(2 - 3\cos\theta).$$

RHS reaches its maximum of 5Rg when $\theta = \pi$. If $u^2 < 5Rg$, the bike will fall before reaching the top. On the other hand, if it falls when $\theta < \frac{\pi}{2}$, it simply rolls back safely. So $u^2 < Rg(2 - 3\cos\frac{\pi}{2}) = 2Rg$.

When $2Rg < u^2 < 5Rg$, there will be an off-the-track fall (an accident).